Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Biomol Struct Dyn ; : 1-10, 2022 Feb 26.
Article in English | MEDLINE | ID: covidwho-2297641

ABSTRACT

The outbreak of SARS-CoV-2 infections around the world has prompted scientists to explore different approaches to develop therapeutics against COVID-19. This study focused on investigating the mechanism of inhibition of clioquinol (CLQ) and its derivatives (7-bromo-5-chloro-8-hydroxyquinoline (CLBQ), 5, 7-Dichloro-8-hydroxyquinoline (CLCQ)) against the viral glycoprotein, and human angiotensin-converting enzyme-2 (hACE-2) involved in SARS-CoV-2 entry. The drugs were docked at the exopeptidase site of hACE-2 and receptor binding domain (RBD) sites of SARS-CoV-2 Sgp to calculate the binding affinity of the drugs. To understand and establish the inhibitory characteristics of the drugs, molecular dynamic (MD) simulation of the best fit docking complex performed. Evaluation of the binding energies of the drugs to hACE-2 after 100 ns MD simulations revealed CLQ to have the highest binding energy value of -40.4 kcal/mol close to MLN-7640 (-45.4 kcal/mol), and higher than the exhibited values for its derivatives: CLBQ (-34.5 kcal/mol) and CLCQ (-24.8 kcal/mol). This suggests that CLQ and CLBQ bind more strongly at the exopeptidase site than CLCQ. Nevertheless, the evaluation of binding affinity of the drugs to SARS-CoV-2 Sgp showed the drugs are weakly bound at the RBD site, with CLBQ, CLCQ, CLQ exhibiting relatively low energy values of -16.8 kcal/mol, -16.34 kcal/mol, -12.5 kcal/mol, respectively compared to the reference drug, Bisoxatin (BSX), with a value of -25.8 kcal/mol. The structural analysis further suggests decrease in systems stability and explain the mechanism of inhibition of clioquinol against SARS-CoV-2 as reported in previous in vitro study.Communicated by Ramaswamy H. Sarma.

2.
J Mol Graph Model ; 114: 108201, 2022 07.
Article in English | MEDLINE | ID: covidwho-1799823

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects the host cells through interaction of its spike protein with human angiotensin-converting enzyme 2 (hACE-2). High binding affinity between the viral spike protein and host cells hACE-2 receptor has been reported to enhance the viral infection. Thus, the disruption of this molecular interaction will lead to reduction in viral infectivity. This study, therefore, aimed to analyze the inhibitory potentials of two mucolytic drugs; Ambroxol hydrochlorides (AMB) and Bromhexine hydrochlorides (BHH), to serve as potent blockers of these molecular interactions and alters the binding affinity/efficiency between the proteins employing computational techniques. The study examined the effects of binding of each drug at the receptor binding domain (RBD) of the spike protein and the exopeptidase site of hACE-2 on the binding affinity (ΔGbind) and molecular interactions between the two proteins. Binding affinity revealed that the binding of the two drugs at the RBD-ACE-2 site does not alter the binding affinity and molecular interaction between the proteins. However, the binding of AMB (-56.931 kcal/mol) and BHH (-46.354 kcal/mol) at the exopeptidase site of hACE-2, significantly reduced the binding affinities between the proteins compared to the unbound, ACE-2-RBD complex (-64.856 kcal/mol). The result further showed the two compounds have good affinity at the hACE-2 site, inferring they might be potent inhibitors of hACE-2. Residue interaction networks analysis further revealed the binding of the two drugs at the exopeptidase site of hACE-2 reduced the number of interacting amino residues, subsequently leading to loss of interactions between the two proteins, with BHH showing better reduction in the molecular interaction and binding affinity than AMB. The result of the structural analyses additionally, revealed that the binding of the drugs considerably influences the dynamic of the complexes when compared to the unbound complex. The findings from this study suggest the binding of the two drugs at the exopeptidase site reduces the binding effectiveness of the proteins than their binding at the RBD site, and consequently might inhibit viral attachment and entry.


Subject(s)
Ambroxol , Bromhexine , COVID-19 Drug Treatment , Angiotensin-Converting Enzyme 2 , Angiotensins/metabolism , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL